P/2014/01663

Received 23/12/14

East Staffordshire Borough Council

Proposed Residential Development Off Pennycroft Lane Uttoxeter Staffordshire

Flood Risk Assessment

Prepared by EWE Associates Ltd Draft Rev0 September 2012

EWE Associates Ltd Windy Ridge Barn Thealby Lane Winterton Scunthorpe North Lincolnshire DN15 9TG t: 0845 8377783 M: 07875 972270 e: lea.favill@eweassociates.com

This document has been prepared solely as a Flood Risk Assessment for East Staffordshire Borough Council. EWE Associates Ltd accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

CLIENT DETAILS

East Staffordshire Borough Council

The Maltsters Wetmore Road Burton upon Trent Staffordshire DE14 1LS

FAO Ranbir Sahota

CONTRACT

This report describes work commissioned by East Staffordshire Borough Council following written instruction dated 31st August 2012. East Staffordshire Borough Council is referred to as the Client and their representative for the contract was Ranbir Sahota. Lea Favill of EWE Associates Ltd carried out the work.

Date:	25 th September 2012	
Prepared by:		Lea Favill Director

REVISION HISTORY

Draft Report Rev0 issued 25th September 2012 - East Staffordshire Borough Council - 1No. copy

EXECUTIVE SUMMARY

The proposed development site is located to the north east of Uttoxeter, Staffordshire. The site is located to the west of the Dove Way and to the east of the A52 Cheadle Road. The site is currently used as a waste facility adjacent to the residential/commercial area off Pennycroft Lane. This section of the site has the Uttoxeter Brook meandering through in a west to east direction eventually discharging under the Dove Way via a large box culvert.

The site covers a total area of approximately 1.473 hectares. Ground levels within the developable site boundary vary from 79.10mOD located in the centre of the site adjacent to the Uttoxeter Brook, up to 85.05mOD located adjacent to Pennycroft Lane. The site generally slopes from the boundaries of the site towards the Uttoxeter Brook within the centre of the site. As such, any runoff within the site is likely to drain in this direction towards the Uttoxeter Brook. The existing site is predominantly paved, as such, is considered to be partially impermeable.

A preliminary proposal for the development is to construct a residential development. It is proposed that 35 residential dwellings are constructed and associated drives and access roads. The impermeable area of the proposed development will be reduced following the completion of the development; hence, the overall surface water runoff from the site will also be reduced.

The development site lies within Zone 1 of the Environment Agency Flood Map (version 2.8.2), being the zone with risk of 1 in 1,000 year (0.1% AEP) or less for river flooding.

The River Dove is located to the east of the site. The 1 in 100 year plus climate change flood level has been estimated at between 75.90mOD and 76.40mOD. The 1 in 1,000 year flood level has been estimated at between 76.45mOD and 76.64mOD.

The lowest ground level within the sites is 79.10mOD. As such during the 1 in 100 year plus climate change and the 1 in 1,000 year events the water level would be at least 2.46m below the lowest ground level within the site.

The Uttoxeter Brook flows through the centre of the site. Tabulated below are the modelled flood levels during the 1 in 100 year plus climate change flood event for the Uttoxeter Brook within the site.

Node reference	Retaining Wall Level (mOD)	Estimated 1 in 100 year +CC flood level (mOD)	Comments
2806	84.00	81.33	No flooding
2806_01	81.50	81.13	No flooding
2806_02	81.20	81.10	No flooding
2806_03	81.20	81.10	No flooding
2733	81.10	81.10	No flooding

The existing site slopes from all sides down to the lower Uttoxeter Brook. As such, the majority of the site is a considerable distance above the bank top level of the Uttoxeter Brook.

In order to comply with the Environment Agency's requirements, it is recommended that the internal finished floor level of the proposed buildings which are residential in nature, are set at a minimum of 600mm above the 1 in 100 year plus climate change flood level at the site. Therefore, based on the 1 in 100 year plus climate change flood level at the downstream end of the site up to 81.33mOD at the upstream end of the site the minimum internal ground floor level for the buildings should vary between 81.70mOD and 81.96mOD relative to the Uttoxeter Brook.

It is therefore considered that applying a 600mm freeboard to the 100 year plus climate change flood level for internal ground floor levels would ensure that if the downstream culvert did become blocked the internal floor level would be elevate sufficiently to ensure that the building remained dry and operational.

It is also recommended that the internal floor level is elevated at least 150mm above the finished external ground level to ensure that any localised flooding doesn't enter the new buildings.

Dry emergency access and egress is essential for the proposed residential development during extreme flood events. The dwellings and road ways will be elevated above the 1 in 1,000 year flood level thus ensuring that whole of the developed area within the site is within flood zone 1, low risk.

As such, dry access from the site will be available for pedestrians to the south west into the existing residential area off Pennycroft Lane which is presently within flood zone 1, low risk. Dry access will also be available onto Dove Way to the north east of the site.

Consideration has been given to the hierarchy for surface water disposal which recommends the SUDs approach which includes infiltration as the first tier. It is considered that infiltration drainage will be impractical solution for the site due to shallow ground water levels, made ground and contaminated ground.

However, other SUDs techniques can be used within the site and they have been considered. The second tier is to discharge to a watercourse and therefore the Uttoxeter Brook within the centre of the site is a viable option for the development.

It is considered that following the development there will be an increase in impermeable area and subsequently runoff from the site as the existing site is 57% impermeable. The impermeable area will be reduced to approximately 50% following the development.

Using WInDes Source Control software developed by Microdrainage the required attenuation has been calculated for the 1 in 100 year plus climate change (30%) event. The site was spilt into two separate areas with all areas discharging into the Uttoxeter Brook at a combined peak runoff rate of 70.6 l/s. It is proposed that 240m³ of storage is provided in the form of oversized pipes.

In conclusion there is a low risk of fluvial flooding from the Uttoxeter Brook. Incorporation of sustainable urban drainage systems should be considered where practically possible to mitigate against flooding caused by surface water runoff. Consultation must also be undertaken with the relevant water authority to establish agreements regarding the allowable peak discharges into the Uttoxeter Brook.

CONTENTS

1.		INTRODUCTION	7
	Approach to	ference the Assessment f Sequential & Exceptions Test	7
2.	DETAILS OF THE SITE		
	Site Details Site Descript	ion	9 10
3.	Sile Fliologi	INITIAL ASSESSMENT	
5.	Environment Past Floodin Environment SFRA Flood	Agency Flood Map Agency Reservoir Flood Map g History Agency Flooding History	11 11 12 12 12
4.		FLOOD RISK ASSESSMENT	- 14
	River Dove - Uttoxeter Bro Surface Wat Existing Dev SUDS 20	is of the Environment Agency ook er Runoff elopment Site	14 16 18 18
5.		MITIGATION MEASURES	
0.	Emergency /	r Levels/Land Raising Access & Egress er Runoff Attenuation	22 22
6.		CONCLUSION	- 24
APPEN	NDICES:		
APPENDIX A: - EXISTING GROUND LEVELS		EXISTING GROUND LEVELS	
APPENDIX B: - PROPOSED LAYOUT		PROPOSED LAYOUT	
APPENDIX C: - RIVER DOVE ENVIRONMENT A		RIVER DOVE ENVIRONMENT AGENCY FLOOD DATA	
APPENDIX D: - UTTOXETER BROOK ENVIRONMENT AG		UTTOXETER BROOK ENVIRONMENT AGENCY FLOOD DATA	
APPENDIX E: - MODIFIED RATIONAL RUNOFF CALCULATION		MODIFIED RATIONAL RUNOFF CALCULATION	

- APPENDIX F: DRAINAGE STRATEGY
- APPENDIX G: WINDES CALCULATION FOR AREA 1
- APPENDIX H: WINDES CALCULATION FOR AREA 2

APPENDIX I: - SEVERN TRENT WATER INFORMATION

LIST OF FIGURES

Figure 2.1: Aerial Photograph of the Existing Site	10
Figure 3.1: Environment Agency Flood Zones	11
Figure 3.2: Environment Agency Reservoir Flood Map	11

LIST OF TABLES

Table 1-1: Flood Risk Vulnerability and Flood Zone 'Compatibility'	8
Table 2-1: Location Plan	9
Table 2-2: Site Details	9
Table 4-1: Uttoxeter Brook Estimated 1 in 100 year flood levels	16
Table 4-2: Uttoxeter Brook Estimated 1 in 100 year plus climate change flood levels	17
Table 4-3: Uttoxeter Brook Estimated 1 in 1,000 year extreme flood levels	17
Table 4-4: Modified Rational Method calculation for existing runoff	18
Table 4-5: Modified Rational Method balance volume for Area 1	19
Table 4-5: Modified Rational Method balance volume for Area 2	20
Table 4-7: SUDS Techniques	21
Table 5-1: Water Levels at Key Locations during unobstructed flow for Uttoxeter Brook	22
Table 5-2: Modified Rational Method balance volumes during 1 in 100 year +CC event	23

1. INTRODUCTION

Terms of Reference

This report was commissioned to supplement a planning application for a proposed residential development off Pennycroft Lane within Uttoxeter, Staffordshire. The site is of a reasonable size and is presently accessed from off Pennycroft Lane. The location of the site is shown on Table 2-1.

The development site lies within Zone 1 of the Environment Agency Flood Map (version 2.8.2), being the zone with risk of 1 in 1,000 year (0.1% AEP) or less for river flooding, however is, greater than 1 hectare.

It is usual for the Agency to raise an objection to development applications within the floodplain or Zone 2 or 3 of the flood map until the question of flood risk has been properly evaluated. The Agency will also object to developments where the total site area is in excess of 1 hectare until suitable consideration has been given to surface water runoff.

Approach to the Assessment

As there are three potential sources of flood risk – the River Dove, Uttoxeter Brook and surface water runoff – it is necessary to determine flood water levels at the site for the desired return periods emanating from these sources.

The River Tean/River Dove is located to the north and east of the site. In line with the site the river is open channel. Directly upstream of the site the river passes under the A50 bypass before flowing south across the lowland area between Uttoxeter and Doveridge. The river is considered to be Main River and as such the responsibility for flood defence and land drainage lies with the Environment Agency.

The Environment Agency has been approached for modelled flood data for the river. The Environment Agency has modelled flood data which may assist in predicting the design flood level for the river adjacent to the proposed development site.

The Uttoxeter Brook meanders through the site in a north easterly direction eventually discharging into the River Dove to the east of the site. The brook is considered to be Main River and as such the responsibility for flood defence and land drainage lies with the Environment Agency.

The Environment Agency has been approached for modelled flood data for the river. The Environment Agency has modelled flood data which may assist in predicting the design flood level for the river adjacent to the proposed development site.

East Staffordshire Borough Council has completed a level 1 and level 2 Strategic Flood Risk Assessment (SFRA) for the district. The SFRA was completed by Haskoning UK Ltd with the level 1 being completed during February 2008 and the level 2 during August 2008. The SFRA has been referred to in this report, however, there a very few site specific references within the report.

The proposed development is an impermeable site. It is considered that the impermeable area within the site will be reduced following the proposed development. However, this assessment will consider the existing discharge routes from the site. An initial drainage strategy will be developed based on the existing data available. There is a site specific site investigation report available completed by BWB Consulting on behalf of East Staffordshire Borough Council during 2010.

A walk over of the site was conducted by Mr Lea Favill, Principal Engineer on 18th September 2012; during the visit a photograph survey of the site was undertaken. A topographical survey completed by Greenhatch Group, drawing 17438_OGL dated August 2012 was commissioned by EWE Associates Ltd. The survey has been calibrated to GPS.

The requirements for flood risk assessments are generally as set out in NPPF and technical guidance. The detail and complexity of the study required should be appropriate to the scale and potential impact of the development. For the purposes of this study, the following have been considered:-

- Available information on historical flooding in the area.

- Site level information.

- Details of structures, which may influence hydraulics of the watercourse and consideration of the effect of blockage of structures.
- Estimates of design levels, equivalent to a 200-year (coastal/tidal) and a 100-year (fluvial) return period flood event.
- Allowances for increased flows resulting from the effects of climate change.
- Allowances for sea level rise resulting from the effects of climate change.

Assess the existing runoff characteristics and the potential impact the proposed development will have on the runoff.

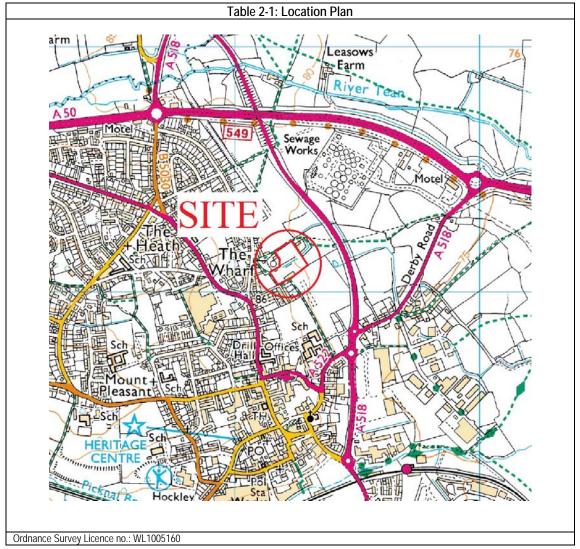
Further guidance is also provided in the CIRIA Research Project 624 "Development and Flood Risk: Guidance for the Construction Industry".

Application of Sequential & Exceptions Test

The proposed residential development site lies within Zone 1 of the Environment Agency Flood Map (version 2.8.2), being the zone with risk of less than 1 in 1,000 year (0.1% AEP) for river flooding. The site is located within an area adjacent to existing residential development. The proposed development is residential, as such, is considered to be "more vulnerable" respectively according to NPPF as shown below in Table 1-1.

Flood Vulnera classific		Essential Infrastructure	Water compatible	Highly Vulnerable	More Vulnerable	Less Vulnerable
Flood Zone	Zone 1	✓	✓	✓	v	✓
	Zone 2	*	√	Exception Test required	*	*
	Zone 3a	Exception Test required	√	×	Exception Test required	*
	Zone 3b	Exception Test required	✓	×	×	×

Table 1-1: Flood Risk Vulnerability and Flood Zone 'Compatibility'


✓ Development is appropriate

➤ Development should not be permitted

As the site is located within flood zone 1 low risk it is considered that a sequential and exceptions test will not be required for this development.

2. DETAILS OF THE SITE

Site Location

Site Details

Table 2-2: Site Details		
Site Name	Residential Development, Pennycroft Lane, Uttoxeter	
Existing Land Use	Domestic waste facility	
Proposed Development	Residential Development	
Grid Reference	SK 09206 34100 centre of sites	
County	Staffordshire	
Local Planning Authority	East Staffordshire Borough Council	
Internal Drainage Board	Not Applicable	
Others	Not Applicable	
Nearest Post Code	ST14 7QZ	

Site Description

The proposed development site is located to the north east of Uttoxeter, Staffordshire. The site is located to the west of the Dove Way and to the east of the A52 Cheadle Road. The site is currently used as a waste facility adjacent to the residential/commercial area off Pennycroft Lane. This section of the site has the Uttoxeter Brook meandering through in a west to east direction eventually discharging under the Dove Way via a large box culvert.

Existing site levels are shown in the topographical survey in Appendix A of this report. Aerial photograph of the existing sites are shown below in Figure 2.1 which shows the existing use within the site relative to the residential area within Uttoxeter.

The site covers a total area of approximately 1.473 hectares. Ground levels within the developable site boundary vary from 79.10mOD located in the centre of the site adjacent to the Uttoxeter Brook, up to 85.05mOD located adjacent to Pennycroft Lane. The site generally slopes from the boundaries of the site towards the Uttoxeter Brook within the centre of the site. As such, any runoff within the site is likely to drain in this direction towards the Uttoxeter Brook. The existing site is predominantly paved, as such, is considered to be partially impermeable.

A preliminary proposal for the development is to construct a residential development. The proposed layout is provided at Appendix B of this report. It is proposed that 35 residential dwellings are constructed and associated drives and access roads. The impermeable area of the proposed development will be reduced following the completion of the development, hence, the overall surface water runoff from the site will also be reduced.

Site Photographs

3. INITIAL ASSESSMENT

Environment Agency Flood Map

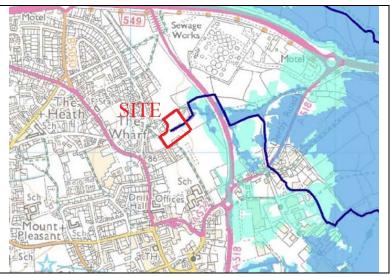


Figure 3.1: Environment Agency Flood Zones

Environment Agency Reservoir Flood Map

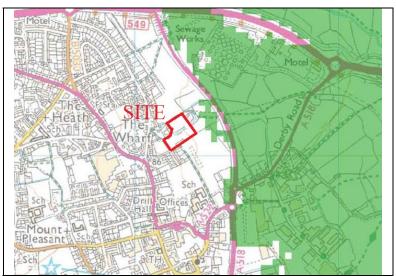


Figure 3.2: Environment Agency Reservoir Flood Map

Past Flooding History

A search on the British Hydrological Society Chronology of British Hydrological Events website¹ found no specific instances of flooding in the immediate vicinity of the proposed development or within the larger Uttoxeter area.

Undertaking an internet based search for flooding in the area found references to the River Dove and the River Tean flooding arable farmland within the Uttoxceter area. However, no specific instances of flooding within the immediate vicinity of the proposed development were found.

Environment Agency Flooding History

The Environment Agency provided no historical flood information close to the site.

SFRA Flooding History

The SFRA provided no historical flood information close to the site. There are thirteen references to flooding within the Uttoxeter area. The majority of these were incidents within the Picknall Brook and the River Dove.

Possible Flooding Mechanisms

As there are three potential sources of flood risk – the River Dove/River Tean, Uttoxeter Brook and surface water runoff – it is necessary to determine flood water levels at the site for the desired return periods emanating from these sources.

The River Tean is approximately 700m to the north of the site. The river is open channel with no flood defences adjacent and therefore overtopping will need to be considered. However, the A50 bypass is located between the site and the river which generally directs flood flows east towards the River Dove where the river flows beneath the A50 bypass. From here the site could potentially be flooded. As such consideration will be given to the River Dove flooding the site.

The River Dove is approximately 1400m to the east of the site. The river is open channel with no flood defences adjacent and therefore overtopping will need to be considered.

The Uttoxeter Brook meanders through the site. The brook is open channel with no flood defences adjacent and therefore overtopping will need to be considered.

The proposed development is greater than 1 hectare and as such, consideration will need to be given to potential flooding as a result of surface water runoff resulting from the proposed development. The proposed development will reduce the drained impermeable area and hence the overall surface water runoff from the site will also be reduced. However, consideration will need to be given to the existing drainage route and characteristics in order to evaluate the potential impact that surface water runoff from the site will have on the site and neighbouring land uses to inform the detailed drainage system design for the proposed development.

Due to the local topography, the site falls towards the Uttoxeter Brook. There is no significantly elevated land adjacent to the site which could result in overland flows being directed through the site. There are no significantly depressed areas which could encourage ponding and as such, these mechanisms will not be considered further for the purposes of this report.

Information on groundwater flooding is limited within the district. The site investigation report suggests that there is shallow ground water in the lower lying areas of the site. The following comment was extracted from the SFRA,

The Environment Agency's groundwater team was consulted and confirmed that there have been very few recorded incidences of groundwater flooding within East Staffordshire. The only events that have occurred are as a result of the cessation of the quarrying of gravel and sand in the area and thus the abstraction of water from the

¹ <u>http://www.dundee.ac.uk/geography/cbhe/</u>

pits. Once the abstraction machines were removed, the groundwater levels rose and filled some of the pits, hence the existence of the Branston Water Park. As a result of this, there has been one report regarding the occurrence of minor cellar flooding.

As such, the risk of flooding from ground water is considered to be low; however, the ground water level may influence the proposed drainage strategy within the site.

Severn Trent Water is the statutory water undertaker and is responsible for the public sewer systems within Uttoxeter area. Severn Trent Water maintains a register of historical sewer flooding events (DG5 Register) within the area. There are no report instances close to the development site.

4. FLOOD RISK ASSESSMENT

Requirements of the Environment Agency

The Environment Agency, as part of its development control procedures, generally require finished floor levels to be set above the 1% AEP plus climate change flood water level at the site. The development is residential in nature, as such it is considered that access and egress from the development site will be essential during times of extreme floods.

The Environment Agency will request that the runoff from the proposed development is restricted to the existing peak runoff rate. The existing site is considered to be 'brownfield development' hence a further 30% reduction will need to be applied to the estimated peak run off rate in order to accommodate climate change over the lifetime of the development. They will further insist that the proposed 1 in 2 year runoff can be maintained and also insist that the 1 in 30 year event is not allowed to flood the surface; hence the water must remain within the pipes, manholes, and storage systems. The 1 in 100 year plus climate change event will be allowed to flood the surface but flood water will not be permitted to enter any of the buildings within the site. The 1 in 100 year plus climate change flood must also be limited to the development boundary and must not be allowed to migrate to adjacent properties.

River Dove

The River Dove rises on the slopes of Axe Edge, close to the Leek to Buxton Road and runs southward for 45 miles to join the River Trent to the north of Burton Upon Trent. It is predominantly a rural river, flowing through Derbyshire and Staffordshire. The confluence with the River Tean is directly upstream of the A50 road bridge.

The River Dove is located approximately 1400m to the east of the site. In line with the site there are no flood defences which protect the site or Uttoxeter.

1 in 100 year flood event within the River Dove

The Environment Agency has provided modelled flood levels for the River Dove directly in line with the site. The data provided is shown at Appendix C of this report. It is considered that node references RD77D to RD75 which are in line with the site are the most representative. The 1 in 100 year flood level has been estimated at between 75.71mOD and 76.30mOD between these nodes.

The lowest ground level within the sites is 79.10mOD. As such, during the 1 in 100 year event the water level would be at least 2.8m below the lowest ground level within the site.

As such, during the 1 in 100 year flood event the site and its access route will not be flooded.

Increase in estimated flood level due to Climate Change

NPPF states that '... Flood risk assessment should be carried out to the appropriate degree at all levels of the planning process, to assess the risks of all forms of flooding to and from development taking climate change into account. The future users of the development must not be placed in danger from flood hazards and should remain safe throughout the lifetime of the plan or proposed development and land use.'

As part the proposed development is for a residential land use, consideration has therefore been given to take into account the potential effects of climate change over the next 100 years in accordance with NPPF. The Environment Agency provided an estimated 1 in 100 year plus climate change flood level in line with the site.

The data provided is shown at Appendix C of this report. It is considered that node references RD77D to RD75 which are in line with the site are the most representative. The 1 in 100 year plus climate change flood level has been estimated at between 75.90mOD and 76.40mOD between these nodes.

The lowest ground level within the sites is 79.1mOD. As such, during the 1 in 100 year event the water level would be at least 2.7m below the lowest ground level within the site. As such, during the 1 in 100 year plus climate change flood event the site and its access route will not be flooded.

Extreme 1 in 1,000 year flood event within the River Dove

The Environment Agency has provided modelled flood levels for the River Dove directly in line with the site. The data provided is shown at Appendix C of this report. It is considered that node references RD77D to RD75 which are in line with the site are the most representative. The 1 in 1,000 year flood level has been estimated at between 76.45mOD and 76.64mOD between these nodes.

The lowest ground level within the sites is 79.1mOD. As such, during the 1 in 1,000 year event the water level would be at least 2.46m below the lowest ground level within the site.

As such, during the 1 in 1,000 year flood event the site and its access route will not be flooded.

Uttoxeter Brook

Uttoxeter Brook rises within the centre of Uttoxeter and conveys flows north east towards the Dove Way where it turns south east towards the River Dove. The brook is generally shallow (1.5m maximum) with a narrow bed width (1.5m maximum) with steep sides. There are no flood defences or flood walls and as such relies upon the natural bank top for its defence. However, within the development site the brook is retained within a man made channel consisting of retaining walls on both left and right banks. The retaining walls do not extend above the natural ground level within the site.

1 in 100 year flood event within the Uttoxeter Brook

The Environment Agency have provided modelled flood levels for the Uttoxeter Brook from its upstream limit adjacent to Pennycroft Lane to downstream of Derby Road. The data provided is shown at Appendix D of this report.

It is considered that node references 2733 to 2806 which are in line with the site are the most representative. The 1 in 100 year flood level has been estimated at between 80.42mOD and 81.09mOD between these nodes. The flood levels for each section within the site have been tabulated below in Table 4-1.

Node reference	Retaining Wall Level (mOD)	Estimated 1 in 100 year flood level (mOD)	Comments
2806	84.00	81.09	No flooding
2806_01	81.50	80.52	No flooding
2806_02	81.20	80.42	No flooding
2806_03	81.20	80.42	No flooding
2733	81.10	80.42	No flooding

Table 4-1: Uttoxeter Brook Estimated 1 in 100 year flood levels

As such during the 1 in 100 year event the water level would be retained below the level of the retaining wall capping with a freeboard of at least 0.50m within the site.

As such during the 1 in 100 year flood event the site and its access route will not be flooded.

Increase in estimated flood level due to Climate Change

NPPF states that '...Flood risk assessment should be carried out to the appropriate degree at all levels of the planning process, to assess the risks of all forms of flooding to and from development taking climate change into account. The future users of the development must not be placed in danger from flood hazards and should remain safe throughout the lifetime of the plan or proposed development and land use.'

As the proposed development is for a residential land use, consideration has therefore been given to take into account the potential effects of climate change over the next 100 years in accordance with NPPF. The Environment Agency provided an estimated 1 in 100 year plus climate change flood level in line with the site.

It is considered that node references 2733 to 2806 which are in line with the site are the most representative. The 1 in 100 year plus climate change flood level has been estimated at between 80.91mOD and 81.19mOD between these nodes. The flood levels for each section within the site have been tabulated overleaf in Table 4-2.

Node reference	Retaining Wall Level (mOD)	Estimated 1 in 100 year +CC flood level (mOD)	Comments
2806	84.00	81.19	No flooding
2806_01	81.50	80.93	No flooding
2806_02	81.20	80.91	No flooding
2806_03	81.20	80.91	No flooding
2733	81.10	80.91	No flooding

Table 4-2: Uttoxeter Brook Estimated 1 in 100	voor plug alimate abange flood levele
Table 4-2. Unoxeler Brook EStimated 1 In 100	vear dius climate change noog levels

As such during the 1 in 100 year plus climate change event the water level would be retained below the level of the retaining wall capping with a freeboard of at least 0.29m within the site.

As such during the 1 in 100 year plus climate change flood event the site and its access route will not be flooded.

Extreme 1 in 1,000 year flood event within the Uttoxeter Brook

The Environment Agency has provided modelled flood levels for the Uttoxeter Brook from its upstream limit adjacent to Pennycroft Lane to downstream of Derby Road. The data provided is shown at Appendix D of this report.

It is considered that node references 2733 to 2806 which are in line with the site are the most representative. The 1 in 1,000 year extreme flood level has been estimated at between 81.10mOD and 81.33mOD between these nodes. The flood levels for each section within the site have been tabulated below in Table 4-3.

Node reference	Retaining Wall Level (mOD)	Estimated 1 in 100 year +CC flood level (mOD)	Comments
2806	84.00	81.33	No flooding
2806_01	81.50	81.13	No flooding
2806_02	81.20	81.10	No flooding
2806_03	81.20	81.10	No flooding
2733	81.10	81.10	No flooding

Table 4-3: Uttoxeter Brook Estimated 1 in 1,000 year extreme flood levels

As such during the 1 in 1,000 year extreme flood event the water level would be retained below the level of the retaining wall capping, however, at the downstream end of the site there would be no freeboard above the estimated flood level.

As such during the 1 in 1,000 year flood event the site and its access route will not be flooded.

Surface Water Runoff

Existing Development Site

The site includes two separate areas with the Uttoxeter Brook located between the two. Both areas are considered to be impermeable and are used for waste disposal and recycling. The combined area has been estimated at 1.473 hectares. There are several structures and buildings within the site and an extensive paved area. It has been estimated that there is 0.734 hectares of impermeable area within the site. As such, the existing site is considered to be 57% impermeable. There is formalised drainage within the site which appears to convey flows towards the Uttoxeter Brook.

During the day of the site inspection there was no signs of ground water or ponded water within the site.

Site investigation data is available for the development site which shows that the ground water level was encountered as high as 79.5mOD within the site. The report also shows the higher areas within the site are generally made ground over sands and gravels which suggest that the higher parts of the site may be suitable for infiltration drainage.

The Severn Trent Water sewer plan shows that the site is crossed by a gravity foul sewer which eventually discharge into the sewerage treatment works to the north east of the site. There are no surface water or combined sewers within the site.

Based on the above it is considered that the site will be able to practically discharge surface water to the Uttoxeter Brook by gravity. It is likely that some of the upper parts of the site will be able to discharge some runoff via infiltration. However, due to the presence of a ground water source and the level of contamination within the site it is assumed that infiltration drainage will not be acceptable in this site. It is assumed that the lower part of the site will not be able to practically discharge surface water drainage via infiltration due to the high ground water levels, the presence of made ground and alluvial clay.

The development is considered to be a 'brownfield' site, as such, the Environment Agency will require that the peak surface water runoff from the development is reduced by up to 30% following the development to accommodate for climate change over the lifetime of the development.

The runoff from the existing site has been calculated using the Modified Rational Method. The output from the spreadsheet is shown at Appendix E the estimated runoff from the site is shown below in Table 4-4 for various return periods based on an impermeable area of 0.834 hectares. Therefore applying a 30% reduction to the peak runoff of 96.22 I/s reduces the peak runoff from the site to 67.354 I/s.

Return Period	Flow in litres per second (I/s)
1 in 2 year	96.22
1 in 30 year	228.93
1 in 100 year	335.13

Table 4-4: Modified	Rational Method	d calculation fo	r existing runoff
	nutronial mounds	ouroundition	i onioting i dirioti

For the purpose of this assessment the peak Greenfield discharge rate from the permabale parts of the site of **5** *I/s/ha* has been conservatively adopted. During a discussion with the Environment Agency Development Control Officer it was confirmed that this would be an appropriate discharge rate for the area. Any discharge from the site into the Uttoxeter Brook will require the consent of Environment Agency and as such they will also need to be approached to agree the discharge restriction from the site. Therefore, based on a Greenfield area of 0.6385 hectares the Greenfield contribution has been estimated at 3.2 I/s. For the purpose of this assessment the peak discharge rate from the site of 70.6 I/s (67.354 I/s + 3.2 I/s) has been conservatively adopted. Any discharge from

the site into the Uttoxeter Brook will require the consent of Environment Agency, as such, they will also need to be approached to agree the discharge restriction from the site.

Proposed Development Drainage Strategy

Due to the presence of elevated ground water within the lower parts of the site and made ground overlying Alluvial Clay it is considered that infiltration drainage is not a practical solution for the site. If soil permeabilities at the site are very low (less than 1×10^{-6} m/s) it will be impractical to rely on infiltration drainage to dispose of the stormwater runoff. As such, it will be necessary to adopt the discharge to the Uttoxeter Brook.

Due to the potential contamination of the ground water source only infiltration drainage has not been adopted for the site. As such the surface water drainage will be directed to a series of oversized pipes before discharging to the Uttoxeter Brook, which is located within the centre of the site, at a restricted runoff rate of 70.6 l/s.

The site has been split into areas 1 and 2 and is shown on the Drainage Strategy plan provided at Appendix F of this report.

Area 1 – Discharge to Uttoxeter Brook via oversized pipes

Area 1 which has an impermeable area of 0.3304 hectares, however, infiltration drainage is assumed to be impractical in this area and therefore a piped connection to the Uttoxeter Brook will be provided within the highway to discharge at the existing peak runoff rate. The increase in runoff will be attenuated by the introduction of an oversized pipe within the main highway. It is considered that both the pavement and roof drainage in this area will be directed to the oversized pipes.

The existing peak runoff rate from the whole site (0.834 hectares) has been estimated at 70.6 l/s which included a 30% reduction for climate change. As such, the peak restricted runoff rate for area 1 has been estimated on an area pro-rata basis. As area 1 has an area of 0.3304 hectares the peak restriction has been estimated at 31.8 l/s.

It is considered that a hydro-brake or office plate will be required prior to discharging into the sewer connection to the brook to regulate the flow. A flapped outfall will need to be constructed adjacent to the Uttoxeter Brook.

An assessment of the required balance volume has been made assuming the post development impermeable area is 0.3304 hectares. Using WinDes Source Control software developed by Microdrainage the required attenuation has been calculated for the 1 in 100 year plus climate change (30%) event. The peak discharge was set at 31.8 l/s has been used for the storage calculations within the model.

Reference should be made to Appendix G where the calculation sheets are provided. The attenuation sizes have been tabulated below in Table 4-5.

Return Period	Attenuation Proposed	Approx Volume (m ³)
1 in 100 year + CC	Oversized pipe 130m of 1m	102m ³
	diameter pipe	

Table 4-5: Modified Rational Method balance volume for Area 1

The proposed drainage strategy has been annotated onto the site layout drawing provided at Appendix F which clearly shows the points of discharge from area 1 and the area proposed for the oversized pipes.

Area 2 – Discharge to Uttoxeter Brook via oversized pipes

Area 2 which has an impermeable area of 0.4031 hectares, however, infiltration drainage is assumed to be impractical in this area and therefore a piped connection to the Uttoxeter Brook will be provided within the highway to discharge at the existing peak runoff rate. The increase in runoff will be attenuated by the introduction of an oversized pipe within the main highway. It is considered that both the pavement and roof drainage in this area will be directed to the oversized pipes.

The existing peak runoff rate from the whole site (0.834 hectares) has been estimated at 70.6 l/s which included a 30% reduction for climate change. As such, the peak restricted runoff rate for area 2 has been estimated on an area pro-rata basis. As area 2 has an area of 0.4031 hectares the peak restriction has been estimated at 38.8 l/s.

It is considered that a hydro-brake or office plate will be required prior to discharging into the sewer connection to the brook to regulate the flow. A flapped outfall will need to be constructed adjacent to the Uttoxeter Brook.

An assessment of the required balance volume has been made assuming the post development impermeable area is 0.4031 hectares. Using WinDes Source Control software developed by Microdrainage the required attenuation has been calculated for the 1 in 100 year plus climate change (30%) event. The peak discharge was set at 38.8 l/s has been used for the storage calculations within the model.

Reference should be made to Appendix H where the calculation sheets are provided. The attenuation sizes have been tabulated below in Table 4-6.

Return Period	Attenuation Proposed	Approx Volume (m ³)
1 in 100 year + CC	Oversized pipe 176m of 1m	138m ³
-	diameter pipe	

Table 4-6: Modified Rational Method balance volume for Area 2

The proposed drainage strategy has been annotated onto the site layout drawing provided at Appendix F which clearly shows the points of discharge from area 2 and the area proposed for the oversized pipes.

It is proposed that the attenuation will be provided in the form of a oversized pipes, designed in accordance with the recommendations of CIRIA C697. This is considered to be the most appropriate type of attenuation facility for a development of this type.

With regard to water quality considerations for the site, it is recommended that 1 treatment train is provided for building roofs and 2 treatment trains are provided for roads and hard-standing areas in line with CIRIA C697 recommendations. For the building roof, it is proposed to use trapped drainage outlets to provide 1 treatment train.

The proposed surface water solution for the site is below ground oversized pipes with a restricted rate of discharge to the Uttoxeter Brook.

The volume balance requirements should be recalculated during the detailed design stage to reflect the actual development proposal, agreed discharge rate and the extent of impermeable areas and runoff to be generated.

SUDS

The Environment Agency requires that adequate pollution control is incorporated into the proposed drainage system in order to prevent deterioration of the quality of the water environment. However, this is only applicable for surface water originating from access roads and communal parking areas, which needs to be passed through a petrol/oil interceptor or equivalent system prior to discharge into the existing surface water sewer or infiltration system. It is noted however, that this will not apply to surface water originating from roof drainage.

To reduce the impact of surface water runoff from the development in accordance with the requirements of the Environment Agency and Local Authority, the employment of SUDS techniques to limit runoff volumes and rates from the site are recommended. SUDS techniques can also be used to provide an appropriate level of treatment to the runoff.

It is normal practice to ensure that the 1 in 30 year event is maintained within the drainage system and the 1 in 100 year is permitted to flood the surface as long as there is no flooding to buildings and the flood volume is contained within the site boundary in specific areas proposed for this purpose.

The following section will provide some possible SUDS techniques which could be employed on the site to balance flows in excess of the 1 in 30 year event. SUDS techniques will also provide treatment to the runoff to remove a proportion of the pollution and protect the quality of the downstream watercourses. Following guidance from CIRIA Report C522 the following levels of treatment will be provided:

- • Roofs 1 level
- • Driveways 1 level
- • Roads and communal parking areas 2 levels.

The level of treatment indicates the number of SUDS techniques that will be used to treat pollution. For example if two levels are required the runoff may enter a filter drain that leads to a basin or pond before outfall. It is recommended that source control techniques are used. In practice there will be little outflow from these techniques for a 1 in 2 year storm as most of the rainfall will be held within the system and will disperse via evapotranspiration. Further detail of the potential to use SUDS within this site it provided below within Table 4-7.

The precise combination of methods used will be dependent upon the site constraints identified at the final design stage.

Initial data suggests that it may be impractical use infiltration drainage within the site due to the presence of shallow ground water adjacent to the Uttoxeter Brook and within the lower parts of the site. However, due to the presence of a ground water source and the potential for contamination within the adjacent site it is recommended that the whole site drains to the adjacent Uttoxeter Brook at this stage.

The impermeable area within the site will be reducing from 57% to approximately 50% following development. There will therefore be a reduction in surface water runoff from the site when it is developed. It is considered that the site currently towards the Uttoxeter Brook within the confines of the site.

The development site is considered to be of a reasonable size with space set aside, in which to incorporate appropriate SUDs techniques. As such the following SUDS techniques shown below in Table 4-7 have been considered for use at this site.

SUDs Group	Suitability for Proposed Development	
Retention	\checkmark	
Wetland	×	
Infiltration	×	
Filtration	×	
Detention	\checkmark	
Open Channel	\checkmark	
Source Control	\checkmark	

Table 4-7: SUDS Techniques

Foul Water Drainage

A developer enquiry has been submitted to Severn Trent Water (STW) with regards to a foul drainage discharge from the site into the STW sewer system. The comments provided by STW are provided at Appendix I of this report which clearly states that STW do not envisage any adverse impact on the existing system due to an additional flow from the proposed 35 dwellings.

The STW response also highlights two sewers which cross the site. The current proposal provides a potential easement area adjacent to the existing sewers.

5. MITIGATION MEASURES

Raising Floor Levels/Land Raising

The River Dove is located to the east of the site. The 1 in 100 year plus climate change flood level has been estimated at between 75.90mOD and 76.40mOD. The 1 in 1,000 year flood level has been estimated at between 76.45mOD and 76.64mOD.

The lowest ground level within the sites is 79.10mOD. As such during the 1 in 100 year plus climate change and the 1 in 1,000 year events the water level would be at least 2.46m below the lowest ground level within the site.

The Uttoxeter Brook flows through the centre of the site. Tabulated below in Table 5-1 are the modelled flood levels during the 1 in 100 year plus climate change flood event for the Uttoxeter Brook within the site.

Node reference	Retaining Wall Level (mOD)	Estimated 1 in 100 year +CC flood level (mOD)	Comments
2806	84.00	81.33	No flooding
2806_01	81.50	81.13	No flooding
2806_02	81.20	81.10	No flooding
2806_03	81.20	81.10	No flooding
2733	81.10	81.10	No flooding

Table 5-1: Water Levels at Key Locations during unobstructed flow for Uttoxeter Brook

The existing site slopes from all sides down to the lower Uttoxeter Brook. As such, the majority of the site is a considerable distance above the bank top level of the Uttoxeter Brook.

In order to comply with the Environment Agency's requirements, it is recommended that the internal finished floor level of the proposed buildings which are residential in nature, are set at a minimum of 600mm above the 1 in 100 year plus climate change flood level at the site. Therefore, based on the 1 in 100 year plus climate change flood level at the downstream end of the site up to 81.33mOD at the upstream end of the site the minimum internal ground floor level for the buildings should vary between 81.70mOD and 81.96mOD relative to the Uttoxeter Brook.

It is therefore considered that applying a 600mm freeboard to the 100 year plus climate change flood level for internal ground floor levels would ensure that if the downstream culvert did become blocked the internal floor level would be elevate sufficiently to ensure that the building remained dry and operational.

It is also recommended that the internal floor level is elevated at least 150mm above the finished external ground level to ensure that any localised flooding doesn't enter the new buildings.

Emergency Access & Egress

Dry emergency access and egress is essential for the proposed residential development during extreme flood events. The dwellings and road ways will be elevated above the 1 in 1,000 year flood level thus ensuring that whole of the developed area within the site is within flood zone 1, low risk.

As such, dry access from the site will be available for pedestrians to the south west into the existing residential area off Pennycroft Lane which is presently within flood zone 1, low risk. Dry access will also be available onto Dove Way to the north east of the site.

Surface Water Runoff Attenuation

Consideration has been given to the hierarchy for surface water disposal which recommends the SUDs approach which includes infiltration as the first tier. It is considered that infiltration drainage will be impractical solution for the site due to shallow ground water levels, made ground and contaminated ground.

However, other SUDs techniques can be used within the site and they have been considered. The second tier is to discharge to a watercourse and therefore the Uttoxeter Brook within the centre of the site is a viable option for the development.

It is considered that following the development there will be an increase in impermeable area and subsequently runoff from the site as the existing site is 57% impermeable. The impermeable area will be reduced to approximately 50% following the development.

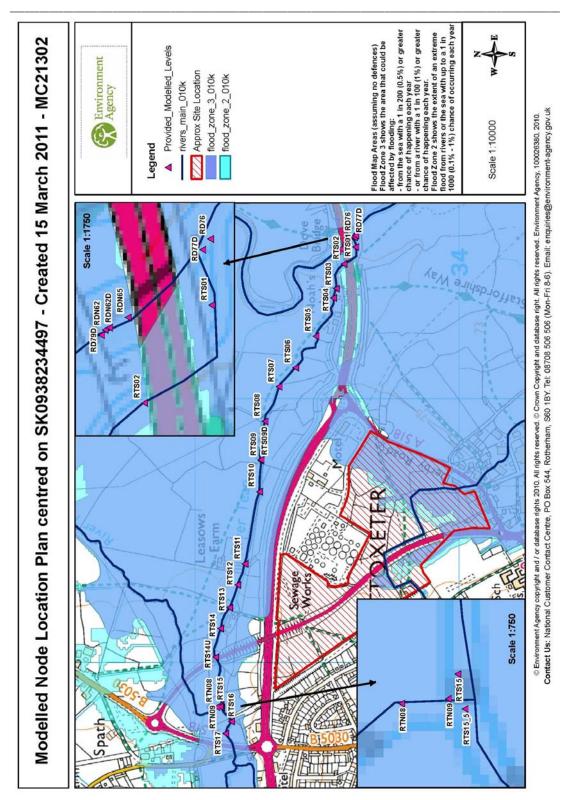
Using WInDes Source Control software developed by Microdrainage the required attenuation has been calculated for the 1 in 100 year plus climate change (30%) event. The site was spilt into two separate areas with all areas discharging into the Uttoxeter Brook at a combined peak runoff rate of 70.6 l/s. The attenuation sizes have been tabulated below in Table 5-2.

Drainage Area	Proposed Attenuation Method	Approx Volume (m ³)
Area 1	Oversized pipe 130m of 1m diameter pipe	102m ³
Area 2	Oversized pipe 176m of 1m diameter pipe	138m ³
Total		240m ³

Table 5-2: Modified Rational Method balance volumes during 1 in 100 year +CC event

It is recommended that during the detailed phase of the development the following items are considered.

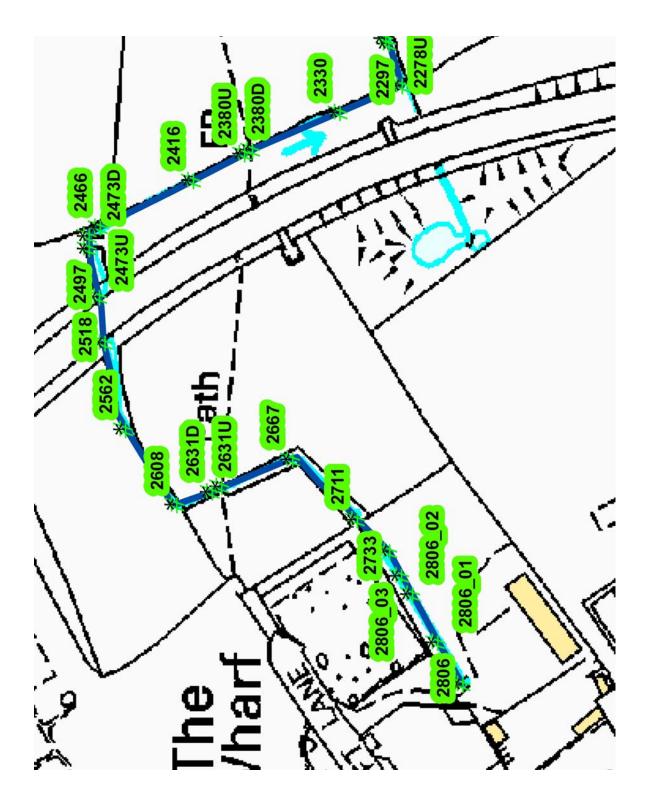
- The proposed surface water drainage system should be modelled using Micro Drainage WinDes or similar. The model should be used to analysis the possibility that the design for surface water may fail or becomes block and as such should design a backup plan. Overland floodwater should be routed away from vulnerable areas. Acceptable depths and rates of flow are contained in EA and Defra document FD2320/TR2 "Flood Risk Assessment Guidance for New Development Phase 2".
- The maintenance and adoption regimes for all elements of the development should be considered for the lifetime of the development.
- Consenting will be required from the Environment Agency for any connections/outfalls into the Uttoxeter Brook.


6. CONCLUSION

In conclusion there is a low risk of fluvial flooding from the Uttoxeter Brook. Incorporation of sustainable urban drainage systems should be considered where practically possible to mitigate against flooding caused by surface water runoff. Consultation must also be undertaken with the relevant water authority to establish agreements regarding the allowable peak discharges into the Uttoxeter Brook.

Appendix A: - Existing Ground Levels

Appendix C: - River Dove Environment Agency Flood Data



EWE Associates Ltd Windy Ridge Barn, Thealby Lane, Winterton, Scunthorpe, North Lincolnshire, DN15 9TG T: 0845 8377783

	Modelled	Modelled Levels - MC21302	302								
				Return F	eriods ()	yrs) Level	Return Periods (yrs) Levels (mAOD)				
		Undefended				Defended	Ided				
NodePoint	Reference	1:100_UD	1:20_D	1:50_D	1:75_D	1:100_D	1:100_D 1:100_cc_D	1:200_D	1:1000_D	x	٢
RD79A		77.40	76.90	77.18	77.30	77.40	77.78	77.76	78.48	410550	334471
RD79D		76.98	76.60	76.82	76.91	76.98	77.27	77.26	77.87	410556	334464
RDN62		76.93	76.57	76.78	76.86	76.93	77.21	77.20	77.75	410559	334462
RDN62D		76.67	76.33	76.53	76.61	76.67	76.94	76.93	77.47	410561	334459
RDN65		76.56	76.24	76.42	76.50	76.56	76.78	76.77	77.23	410567	334447
RD77D		76.30	76.07	76.21	76.26	76.30	76.40	76.39	76.64	410612	334397
RD76		76.19	75.96	76.09	76.15	76.19	76.27	76.27	76.42	410619	334392
RD75		75.71	75.50	75.62	75.67	75.71	75.90	75.89	76.45	410764	334212
RTS17		83.76	83.42	83.62	83.70	83.76	83.90	83.89	83.96	408732	334884
RTS16		83.10	82.94	83.06	83.08	83.10	83.16	83.15	83.20	408779	334863
RTS15_5		82.68	82.51	82.60	82.65	82.67	82.70	82.70	82.75	408831	334899
RTS15		82.54	82.42	82.47	82.51	82.54	82.59	82.58	82.64	408841	334901
RTS14		80.95	80.83	80.90	80.93	80.95	81.02	81.00	81.12	409130	334904
RTS13		80.39	80.32	80.36	80.38	80.39	80.43	80.42	80.50	409209	334869
RTS12		79.86	79.80	79.84	79.85	79.86	79.90	79.90	79.97	409296	334838
RTS11		79.46	79.41	79.44	79.45	79.46	79.51	79.50	79.57	409375	334810
RTS10	Piver Dove Flood	78.20	78.17	78.19	78.19	78.20	78.26	78.25	78.76	409649	334756
RTS09	Risk Manning	77.84	77.78	77.80	77.82	77.84	78.10	78.09	78.74	409766	334750
RTS09D	Study 2000	77.83	77.77	77.80	77.81	77.83	78.09	78.08	78.73	409770	334751
RTS08	ound zooo	77.71	77.30	77.52	77.62	77.71	78.07	78.05	78.72	409915	334735
RTS07		77.70	77.25	77.50	77.61	77.70	78.06	78.04	78.71	410046	334682
RTS06		77.68	77.21	77.48	77.59	77.68	78.04	78.03	78.70	410119	334619
RTS05		77.67	77.19	77.47	77.58	77.67	78.04	78.02	78.70	410238	334542
RTS04		77.63	77.14	77.42	77.53	77.63	78.00	77.99	78.72	410382	334475
RTS03		77.62	77.12	77.41	77.52	77.62	78.00	77.98	78.64	410418	334465
RTS02		75.80	75.75	75.77	75.78	75.80	75.81	75.81	76.21	410511	334436
RTS01		76.30	76.07	76.21	76.26	76.30	76.40	76.39	76.64	410576	334391
RTN09		82.62	82.43	82.54	82.59	82.62	82.66	82.65	82.72	408834	334904
RTN08		82.55	82.35	82.47	82.52	82.55	82.58	82.58	82.65	408833	334917
RTS14U		81.45	81.37	81.42	81.44	81.45	81.49	81.48	81.56	409022	334922
RD72		73.37	73.33	73.35	73.36	73.36	73.39	73.39	73.46	411511	333301
RD71		72.95	72.82	72.89	72.92	72.95	73.03	73.03	73.28	411253	333049
RD70		72.65	72.49	72.59	72.62	72.65	72.74	72.74	72.99	411187	332657
RD74		74.90	74.79	74.86	74.88	74.90	74.96	74.96	75.10	411119	333975
RD73		74.11	74.03	74.08	74.10	74.11	74.17	74.17	74.30	411342	333731
RD74D		74.83	74.73	74.79	74.81	74.83	74.89	74.89	75.02	411116	333965

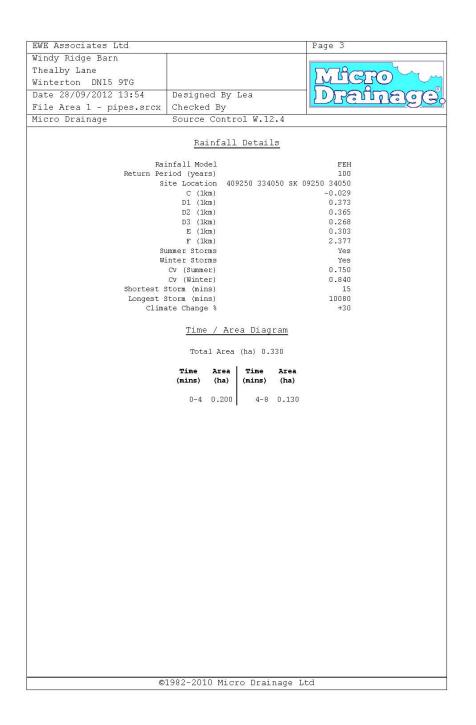
EWE Associates Ltd Windy Ridge Barn, Thealby Lane, Winterton, Scunthorpe, North Lincolnshire, DN15 9TG T: 0845 8377783

Appendix D: - Uttoxeter Brook Environment Agency Flood Data

Modelled Levels - 15/DE

		ls (mAOE))					
				Defe	nded			Undefended
Node Point	1:20yr	1:50yr	1:75yr	1:100yr	1:100yr+cc	1:200yr	1:1000yr	1:100yr
2806	81.03	81.07	81.08	81.09	81.19	81.18	81.33	81.09
2806_01	80.28	80.38	80.43	80.52	80.93	80.90	81.13	80.52
2806_02	79.70	80.06	80.25	80.42	80.91	80.88	81.10	80.42
2806_03	79.67	80.05	80.25	80.42	80.91	80.88	81.10	80.42
2733	79.66	80.05	80.24	80.42	80.91	80.88	81.10	80.42
2711	78.76	78.85	78.88	78.90	78.96	78.95	79.09	78.90
2667	78.55	78.67	78.71	78.73	78.77	78.76	78.81	78.73
2631U	78.34	78.52	78.57	78.59	78.65	78.64	78.72	78.59
2631D	78.20	78.29	78.31	78.32	78.35	78.34	78.39	78.32
2608	77.81	77.89	77.91	77.92	77.95	77.95	77.99	77.92
2562	77.41	77.49	77.52	77.53	77.56	77.56	77.61	77.53
2518	77.33	77.41	77.43	77.44	77.47	77.47	77.52	77.44
2497	77.31	77.36	77.39	77.39	77.41	77.41	77.44	77.39
2473U	77.24	77.28	77.30	77.30	77.31	77.31	77.33	77.30
2473D	77.24	77.28	77.30	77.30	77.31	77.31	77.33	77.30
2466	77.23	77.26	77.28	77.28	77.29	77.29	77.30	77.28
2416	77.21	77.24	77.26	77.26	77.26	77.26	77.26	77.26
2380U	77.00	77.10	77.14	77.15	77.16	77.15	77.17	77.14
2380D	76.98	77.06	77.09	77.09	77.11	77.10	77.12	77.09
2330	76.68	76.71	76.73	76.73	76.73	76.73	76.74	76.73
2297	76.60	76.63	76.65	76.65	76.66	76.66	76.66	76.65
2278U	76.56	76.59	76.60	76.61	76.61	76.61	76.62	76.61
2278D	76.47	76.49	76.50	76.51	76.51	76.51	76.52	76.51
2248			76.43	76.43	76.44	76.44	76.45	76.43
2217		76.37		76.38	76.39	76.39	76.40	76.38
2182	76.30	76.32	76.33	76.34	76.34	76.34	76.35	76.34
2143	76.21	76.23	76.24	76.24	76.24	76.24	76.25	76.24
2093	76.12	76.14	76.14	76.14	76.15	76.15	76.15	76.15
2049		76.10		76.11	76.11	76.11	76.11	76.11
2014		76.08		76.09	76.09	76.09	76.09	76.09
1975U	75.92	75.94	75.96	75.97	75.97	75.97	75.99	75.97
1975D			75.85	75.86	75.86	75.86	75.87	75.86
1917			75.42	75.43	75.44	75.44	75.46	75.43
1738	75.17		75.23	75.24	75.24	75.24	75.26	75.24
1684	74.98	75.05	75.06	75.07	75.07	75.07	75.09	75.07

Appendix E: - Modified Rational Runoff Calculation

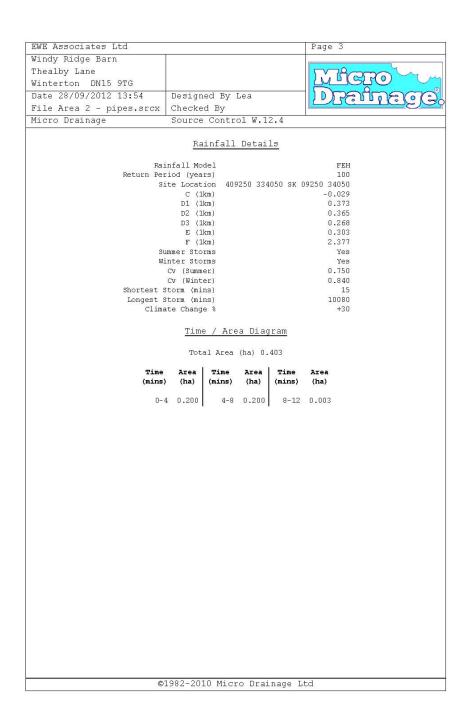

		Post Development		Rainfall	2	years		
ength (m)	71 m	Rainfall Duration	Rainfall Duration	Rainfall Depth	Effective	Rainfall Intensity	FLOW (I/s)	FLOV
rea (ha)	0.834 Ha	(hours)	(days)	(mm)	Depth (mm)	(mm/hr)	FLOW (US)	(1/s/ha
lax Height	85.1 mAOD	0.13	0.005	5.3	5.4	40.8	96.2	115.3
lin Height	80.7 mAOD	0.25	0.010	6.83	7.0	27.3	64.5	77.3
eltaH	4.3	0.5	0.021	8.91	9.1	17.8	42.1	50.4
Slope (%)	6.07	0.75	0.031	10.4	10.6	13.9	32.7	39.2
'e (mins)	8.00 mins	1	0.042	11.6	11.8	11.6	27.4	32.8
NRF	0.997	1.25	0.052	12.61	12.8	10.1	23.8	28.5
SAAR	758.000 mm	1.5	0.063	13.51	13.7	9.0	21.3	25.5
JCWI	78 mm	1.75	0.073	14.32	14.6	8.2	19.3	23.2
MP	100.0 %	2	0.083	15.05	15.3	7.5	17.8	21.3
OIL	0.40		0.094	15.73	16.0	7.0	16.5	19.8
ercentage Runoff PR EEPSTOR	78.28 0.30	2.5	0.104	16.36 16.96	16.6	6.5 6.2	15.4 14.6	18.5
EEPSIOR	0.30		0.115					
		3	0.125	17.52 18.05	17.8	5.8 5.6	13.8	16.5
	0.70004	3.5	0.135	18.56	18.9	5.0	13.1	15.0
tv.	0.78284	3.75	0.146	19.04	19.4	5.5	12.5	14.4
laundala andflaun	1.5		0.156	19.51		4.9		
nowable outflow	96.22 1/5	4	0.167	19.51	19.9 20.3	4.9	11.5 11.1	13.8
year	90.22 05	4.20	0.177	19.90	20.3	4.1	11.1	13.3
Indified Dational I	lathod		Data Daria d	flood	20			
Modified Rational N	letilod	Post Development	Return Period		30 50	years vears		
.ength (m)	71 m	Rainfall Duration	Rainfall Duration	Rainfall Rainfall Depth	Effective	Rainfall Intensity	Concernence of the second second	FLOV
krea (ha)	0.834 Ha	(hours)	(days)	(mm)	Depth (mm)	(mm/hr)	FLOW (I/s)	(l/s/h
fax Height	85.1 mAOD	0.2	0.008	19.4	19.7	97.0	228.9	274
lin Height	80.7 mAOD	0.25	0.010	23.36	23.8	93.4	220.5	264
ltaH	43	0.5	0.021	28.31	28.8	56.6	133.6	160 1
lope (%)	6.07	0.75	0.031	31.63	32.2	42.2	99.5	119.3
e (mins)	8.00 mins	1	0.042	34.21	34.8	34.2	80.7	96.8
RF	0.997	1.25	0.052	36.34	37.0	29.1	68.6	82.3
BAAR	758.000 mm	1.5	0.063	38.18	38.9	25.5	60.1	72.0
CWI	78 mm	1.75	0.073	39.8	40.5	22.7	53.7	64.3
MP	100.0 %	2	0.083	41.26	42.0	20.6	48.7	58.4
SOIL	0.40	2.25	0.094	42.58	43.3	18.9	44.7	53.5
ercentage Runoff PR	78.28	2.5	0.104	43.8	44.6	17.5	41.3	49.6
EEPSTOR	0.30	2.75	0.115	44.94	45.7	16.3	38.6	46.2
		3	0.125	46	46.8	15.3	36.2	43.4
		3.25	0.135	46.99	47.8	14.5	34.1	40.9
CV	0.78284	3.5	0.146	47.93	48.8	13.7	32.3	38.7
й —	1.3	3.75	0.156	48.83	49.7	13.0	30.7	36.8
llowable outflow		4	0.167	49.67	50.5	12.4	29.3	35.1
30 year	228.93 I/s	4.25	0.177	50.48	51.4	11.9	28.0	33.6
								
Modified Rational M	lethod		Return Period	flood	100	vears		
Modified Rational N	lethod	Post Development	Return Period	flood Rainfall	100 140	years years		
ength (m)	71 m	Post Development Rainfall Duration	Return Period	Rainfall			ELOW (IIIc)	FLOV
ength (m) rea (ha)	71 m 0.834 Ha	Rainfall Duration (hours)		Rainfall Rainfall Depth (mm)	140	years Rainfall Intensity (mm/hr)	FLOW (I/s)	(l/s/ha
ength (m) rea (ha) lax Height	71 m 0.834 Ha 85.1 mAOD	Rainfall Duration (hours) 0.2	Rainfall Duration (days)	Rainfall Rainfall Depth (mm) 28.4	140 Effective Depth (mm) 28.9	years Rainfall Intensity (mm/hr) 142.0	335.1	(I/s/ha
ength (m) rea (ha) lax Height lin Height	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD	Rainfall Duration (hours) 0.2 0.25	Rainfall Duration (days) 0.008 0.010	Rainfall Rainfall Depth (mm) 28.4 33.48	140 Effective Depth (mm) 28.9 34.1	years Rainfall Intensity (mm/hr) 142.0 133.9	335.1 316.1	(I/s/ha 401.7 378.9
ength (m) rea (ha) lax Height lin Height eltaH	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3	Rainfall Duration (hours) 0.2 0.25 0.5	Rainfall Duration (days) 0.008 0.010 0.021	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71	140 Effective Depth (mm) 28.9 34.1 40.4	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4	335.1 316.1 187.4	(l/s/h 401.) 378.9 224.)
ength (m) rea (na) lax Height lin Height leitaH lope (%)	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07	Rainfall Duration (hours) 0.2 0.25 0.5 0.5 0.75	Rainfall Duration (days) 0.008 0.010 0.021 0.031	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82	140 Effective Depth (mm) 28.9 34.1 40.4 44.6	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4 58.4	335.1 316.1 187.4 137.9	(I/s/h 401. 378.9 224.1 165.2
ength (m) rea (ha) ax Height lin Height eltaH lope (%) e (mirs)	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 mins	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0	335.1 316.1 187.4 137.9 110.9	(I/s/h) 401. 378.9 224. 165.3 132.9
ength (m) rea (ha) iax Height lin Height eltaH lope (%) e (mins) RF	71 m 0.834 Ha 85.1 mAOD mAOD 4.3 6.07 8.00 mins 0.997	Rainfall Duration (hours) 0.2 0.5 0.5 0.75 1 1.25	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6	335.1 316.1 187.4 137.9 110.9 93.6	(l/s/h 401. 378.9 224.1 165.1 132.9 112.1
ength (m) rea (ha) lax Height eitaH lope (%) e (mins) RF AAR	71 m 0.834 Ha 85.1 mAOD 40.7 mAOD 6.07 mins 0.997 758.000 mm	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1 1.25 1.5	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5	335:1 316.1 187.4 137.9 110.9 93.6 81.5	(l/s/h 401 3785 224 165 1325 1325 1121 97.6
ength (m) rea (ha) ax Height lin Height eltaH lope (%) e (mins) RF AAR CWI	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 8.00 mins 0.997 758.000 78 mm	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1.25 1.5 1.75	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073	Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7	years Rainfall Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 38.6 34.5 30.7	335,1 316,1 187,4 137,9 110,9 93,6 81,5 72,4	(I/s/h 401. 378. 224. 165. 132.9 112. 97.6 86.8
ength (m) rea (ha) lax Height lin Height eltaH lope (%) e (mins) RF AAR CWI IMP	71 m 0.834 Ha 85.1 mAOD 4.3 mAOD 6.07 mins 0.997 mm 758.000 mm 78 mm 100.0 %	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1.25 1.5 1.75 2	Octobe Octobe 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.083 0.083	Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 55.44	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 50.4 50.4 50.4 55.4 56.4	years Rainfal Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7	335:1 316:1 187:4 137:9 110:9 93:6 81:5 72:4 65:4	(I/s/h: 401. 378.9 224. 165.1 132.9 112.1 97.6 86.8 78.4
ength (m) rea (ha) lax Height eltaH lope (%) e (mins) RF AAR CWI IMP OIL	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 80.0 mins 0.997 758.000 78 mm 100.0 %	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1.25 1.5 1.5 1.75 2 2.25	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.083 0.094	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01	140 Effective 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 55.4 55.0	years Rainfal Intensity (millify) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 59.8	(I/s/h: 401.) 378.9 224.) 165.3 132.9 112.2 97.6 86.8 78.4 71.7
ength (m) rea (ha) lax Height lin Height leitaH lope (%) e (mins) RF AAR AAR CWI IMP OIL ercentage Runoff PR	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 8.00 mins 0.997 758.000 78 mm 100.0 % 0.40 % 0.40 %	Rainfall Duration (hours) 0.2 0.5 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.063 0.063 0.073 0.083 0.094 0.094	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 58.46	140 Effective 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 55.4 56.4 58.0 59.5	years Rainfail Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 59.8 55.2	(I/s/h) 401. 378. 224. 165. 132. 112. 97.6 86.8 78.4 71.7 66.2
ength (m) rea (ha) tax Height tin Height beltaH loope (%) re (mins) RF AAR ICWI IMP ICWI IMP COIL erecentage Runoff PR	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 80.0 mins 0.997 758.000 78 mm 100.0 %	Rainfall Duration (hours) 0.2 0.25 0.5 0.76 1 1.25 1.5 1.5 1.75 2 2.25 2.5 2.5 2.75	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.083 0.094 0.094 0.104 0.115	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 58.46 59.79	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 56.4 58.0 58.0 58.0 58.5 60.8	years Rainfal Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7	335.1 316.1 187.4 137.9 93.6 81.5 72.4 65.4 55.8 55.2 51.3	(I/s/h) 401. 378. 224. 165. 132. 112. 97.6 86.8 78.4 71.7 66.2 61.5
ength (m) trea (ha) fax Height Min Height beltaH Jobpe (%) 'e (mins) RF SAR JCWI JCWI JCWI JCWI JCWI SOIL	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 8.00 mins 0.997 758.000 78 mm 100.0 % 0.40 % 0.40 %	Rainfall Duration (hours) 0.2 0.25 0.5 0.5 0.75 1 1.25 1.5 1.5 1.75 2 2.25 2.5 2.75 3	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.063 0.073 0.094 0.104 0.115 0.125	Rainfall Rainfall Depth (mm) 28.4 33.48 33.9.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 58.46 59.79 61.04	140 Effective 28.9 34.1 44.6 47.8 50.4 52.7 54.7 56.4 56.4 58.0 59.5 60.8 62.1	years Rainfal Intensity (multr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7 20.3	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 59.8 55.2 51.3 48.0	(I/s/ha 401.7 378.9 224.1 165.3 132.9 112.2 97.6 86.8 78.4 71.7 66.2 61.5 57.6
Length (m) Area (ha) Aax Height Min Height DeltaH Slope (%) Slope (%) Slope (%) Slope (%) Slope (%) Parent Slope (%) Parent Slo	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 6.00 mins 0.997 758.000 788 mm 100.0 % 0.40 78.28 0.30	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1.25 1.5 1.75 2.25 2.5 2.75 3 3.25	Rainfall Duration (days) 0.008 0.010 0.021 0.042 0.052 0.063 0.073 0.083 0.073 0.083 0.094 0.104 0.115 0.125 0.135	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 58.46 59.79 61.04 62.2	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 56.4 58.0 59.5 60.8 60.8 60.8 62.1 63.3	years Rainfail Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7 20.3 19.1	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 59.8 55.4 59.8 55.2 51.3 48.0 45.2	(I/s/ha 401.7 378.9 224.7 165.3 132.9 112.7 97.6 86.8 78.4 71.7 66.2 61.5 57.6 54.1
Length (m) Area (ha) Max Height Max Height Max Height DeltaH Slope (%) Fe (mins) RF SAAR JCWI JCWI JCWI Percentage Runoff PR DEEPSTOR CV	71 m 0.834 Ha 85.1 mAOD 4.3 mAOD 4.3 mAOD 6.07 mins 0.997 mm 758.000 mm 78 mm 1000 % 0.30 0.30	Rainfall Duration (hours) 0.2 0.5 0.5 0.75 1 1.25 1.5 1.75 2.25 2.5 2.5 2.75 3 3.25 3.5	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.083 0.094 0.104 0.115 0.125 0.135 0.146	Rainfall Rainfall Depth (mm) 28.4 33.48 33.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 55.44 57.01 58.46 59.79 61.04 62.2 63.3	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 55.4 58.0 58.0 59.5 60.8 62.1 63.3 64.4	years Rainfal Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7 20.3 19.1 18.1	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 55.2 51.3 48.0 45.2 42.7	(I/s/ha 401.7 378.5 224.7 165.3 132.5 112.2 97.6 86.8 78.4 71.7 7.66.2 61.5 57.6 54.1 51.2
Length (m) Area (ha) Max Height Max Height Max Height DeltaH Slope (%) Fe (mins) RF SAAR JCWI JCWI JCWI Percentage Runoff PR DEEPSTOR CV	71 m 0.834 Ha 85.1 mAOD 80.7 mAOD 4.3 6.07 6.00 mins 0.997 758.000 788 mm 100.0 % 0.40 78.28 0.30	Rainfall Duration (hours) 0.2 0.25 0.5 0.75 1 1.25 1.5 2 2.25 2.5 2.75 3 3.25 3.5 3.75	Rainfall Duration (days) 0.008 0.010 0.021 0.052 0.052 0.063 0.073 0.073 0.073 0.094 0.014 0.115 0.125 0.146 0.156	Rainfall Rainfall Depth (mm) 28.4 33.48 39.71 43.82 46.97 49.56 51.77 53.71 53.71 53.74 57.01 58.46 59.79 61.04 62.2 63.3 64.34	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 57.5 57.5 58.0 58.0 59.5 60.8 62.1 63.3 64.4 65.5	years Rainfal Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7 20.3 19.1 18.1 17.2	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 59.8 55.2 51.3 48.0 45.2 42.7 40.5	(I/s/ha 401.7 378.5 224.7 165.3 132.2 97.6 86.8 78.4 71.7 66.2 61.5 57.6 57.6 54.1 51.2 48.5
Modified Rational N ength (m) trea (ha) dax Helght din Helght blope (%) fe (mins) RF SAAR JCWI MP SOIL Percentage Runoff PR DEEPSTOR CV CV CV CV CV CV CV CV CV CV	71 m 0.834 Ha 85.1 mAOD 4.3 mAOD 4.3 mAOD 6.07 mins 0.997 mm 758.000 mm 78 mm 1000 % 0.30 0.30	Rainfall Duration (hours) 0.2 0.5 0.5 0.75 1 1.25 1.5 1.75 2.25 2.5 2.5 2.75 3 3.25 3.5	Rainfall Duration (days) 0.008 0.010 0.021 0.031 0.042 0.052 0.063 0.073 0.083 0.094 0.104 0.115 0.125 0.135 0.146	Rainfall Rainfall Depth (mm) 28.4 33.48 33.71 43.82 46.97 49.56 51.77 53.71 55.44 57.01 55.44 57.01 58.46 59.79 61.04 62.2 63.3	140 Effective Depth (mm) 28.9 34.1 40.4 44.6 47.8 50.4 52.7 54.7 55.4 58.0 58.0 59.5 60.8 62.1 63.3 64.4	years Rainfal Intensity (mm/hr) 142.0 133.9 79.4 58.4 47.0 39.6 34.5 30.7 27.7 25.3 23.4 21.7 20.3 19.1 18.1	335.1 316.1 187.4 137.9 110.9 93.6 81.5 72.4 65.4 55.2 51.3 48.0 45.2 42.7	(I/s/ha 401.7 378.9 224.7 165.3 132.9 112.2 97.6 86.8 78.4 71.7 66.2 61.5 57.6

Appendix F: - Drainage Strategy

Appendix G: - WinDes Calculation for Area 1

EWE Associates Ltd					Page	e 1
Windy Ridge Barn						
Thealby Lane						70
Winterton DN15 9TG					Ň	Maro V
		. l	-			
Date 28/09/2012 13:5	1000	igned By	/ Lea			LEURECE
File Area 1 - pipes.		cked By			[0
Micro Drainage	Sou	irce Cont	rol W.1	12.4		
Summary	of Result	s for 10)0 year	Retur	n Perio	od (+30%)
-	<i>M</i> .					61 Al. 1923
	torm Ivent	Max Level 1	Max Depth Co	Max	Max	Status
F	svenc	(m)		(l/s)	(m ³)	
		(m)	(167)	1/3/	(m)	
15	min Summer	78.856	0.856	23.8	79.8	ОК
30	min Summer	78.891	0.891	23.8	83.8	ОК
	min Summer			23.7	79.7	ОК
	min Summer		0.772	23.8	69.9	ΟK
	min Summer			23.7	60.1	O K
	min Summer			23.8	50.4	OK
	min Summer			23.8	31.2	ОК
	min Summer				18.8	O K
	min Summer				13.0	
	min Summer			21.2	9.9	ОК
	min Summer			17.9	6.8	O K
	min Summer			13.4	4.2	ОК
	min Summer			9.9	2.7	O K
	min Summer			7.9	2.0	о к 0 к
	min Summer			5.6 4.4	1.3 1.0	OK
	min Summer min Summer			4.4 3.6	0.8	OK
	min Summer		0.094 0.087	3.1	0.8	OK
	min Summer			2.7	0.6	0 K
		torm	Rain	Time-	Deels	
		vent	(mm/hr)			
		3	1 61 0 61		10	
		in Summer			19	
		in Summer in Summer			31 48	
		in Summer			40 84	
		in Summer			116	
		in Summer			150	
		in Summer			208	
		in Summer			260	
		in Summer			316	
		in Summer			374	
		in Summer			492	
		in Summer			734	
		in Summer			1100	
		in Summer			1452	
		in Summer			2192	
	5760 m	in Summer	1.614	1	2840	
	7200 m	in Summer	1.330	נ	3672	
	8640 m	in Summer	1.136	5	4336	
	10080 m	in Summer	0.994	1	5000	
	©1982	-2010 Mi	cro Dra	inage	Ltd	

EWE Associates Ltd						Page	2	
Windy Ridge Barn						9		
Thealby Lane							70	
Winterton DN15 9TG							ICRO)	m
	- 4		1 -	The state of the s				R
Date 28/09/2012 13:			gned B			20	LCUICK	9 (3
File Area 1 - pipes	.srcx	2002 1912 2915 A. M.C.	hecked By				(
Micro Drainage		Sourc	ce Con	trol W	.12.4			
Summary	of Re	sults	for 1	00 yea	r Retur	n Perio	od (+30%)	
	Storm		Max	Max	Max	Max	Status	
	Event	20			Control			
			(m)	(m)	(1/s)	(m³)		
15	min Wi	nter 7	8.962	0.962	23.8	91.1	ОК	
		nter 7				96.8	O K	
		nter 7			23.8	92.4	O K	
		nter 7			23.7	78.4	o k	
		nter 7				63.2	ОК	
		nter 7				47.0	O K	
		nter 7			23.8	18.9	ОК	
480	min Wi	nter 7	8.279	U.279	21.6	10.5	0 K	
				0.241 0.217	18.7 16.5	7.4 5.8	O K O K	
				0.188		5.8 4.1	OK	
				0.156		2.6	O K	
				0.132	7.2	1.8	ΟK	
2880	min Wi	nter 7	8.118	0.118	5.8	1.4	ОК	
		nter 7			4.1	0.9	O K	
		nter 7			3.1	0.7	O K	
		nter 7			2.6	0.6	O K	
		nter 7			2.2	0.5	o k	
10080	min Wi	nter 7	8.071	0.071	1.9	0.4	0 К	
		Stor	rm	Rair	1 Time	-Peak		
		Ever		(mm/h				
				: 161.9		19		
				c <mark>95.6</mark> c 56.4		31 52		
				c 33.3		90		
				c 24.4		126		
		240 min				160		
				r 14.4		208		
		480 min	Winter	: 11.6	11	258		
				c 9.7		314		
				8.5		372		
				c 6.8		492		
				c 5.0		734 1080		
				c 3.6 c 2.9		1080 1436		
				c 2.9		2180		
				c 1.6		2920		
	7	200 min	Winter	: 1.3	30	3568		
	8	640 min	Winter	r 1.1	36	4288		
	10	080 min	Winter	c 0.9	94	5104		
					ainage			



EWE Associates Ltd	I	Page 4						
Windy Ridge Barn		Page 4						
Thealby Lane								
Winterton DN15 9TG		L'ICRO						
Date 28/09/2012 13:54	Designed By Lea	Drafnare						
File Area 1 - pipes.srcx	Checked By	<u>Provide Bo</u>						
Micro Drainage	Source Control W.12.4							
inforto brannago								
	Model Details							
Storaç	ge is Online Cover Level (m) {	80.000						
	Pipe Structure							
Diameter Slope ((m) 1.000 Length (m) 1:X) 500.000 Invert Level (m)							
Hydro-Brake® Outflow Control								
Design Head (m) 2. Design Flow (1/s) 3	000 Hydro-Brake® Type Md4 Inv 1.8 Diameter (mm) 170	ert Level (m) 78.000						
Depth (m) Flow (l/s) Depth	(m) Flow (l/s) Depth (m) Flow	(l/s) Depth (m) Flow (l/s)						
0.200 14.6 1. 0.300 22.7 1. 0.400 23.3 1. 0.500 21.0 2. 0.600 19.7 2. 0.800 20.5 2.	200 24.7 3.000 400 26.6 3.500 600 28.5 4.000 800 30.2 4.500 000 31.8 5.000 200 33.4 5.500 400 34.9 6.000 600 36.3 6.500	39.0 7.000 59.6 42.1 7.500 61.7 45.0 8.000 63.7 50.4 9.000 67.6 52.8 9.500 69.4 55.2 57.4						
فالعدار	1000 0010 Migra Product 1	- 4						
©	1982-2010 Micro Drainage Lt	ad .						

Appendix H: - WinDes Calculation for Area 2

EWE Associates Ltd						Pag	e 1	
Windy Ridge Barn	-							
Thealby Lane								
Winterton DN15 9TG						LĽ	LICPO	
Date 28/09/2012 13:5	Desi	esigned By Lea				Dalpara		
						<u>Le le G</u>		
File Area 2 - pipes.	hecked By							
Micro Drainage Source Control W.12.4								
Summary	of Re	sult:	s for 1	00 yea	r Retur	n Peri	od (+30%)	
Storm Max Max Max Max Status								
	Event		Level		Control	10000	b cu cub	
			(m)	(m)	(1/s)	(m³)		
			78.833		30.2	96.5	ОК	
			78.863			101.4	O K	
			78.830		30.2		O K	
			78.754		30.2	83.2	O K	
			78.679		30.2	70.3 57.3	O K O K	
			78.604 78.464		30.2 30.2	57.3 34.3	ок	
			78.374			34.3 21.3	OK	
			78.374			15.0		
			78.289			11.5		
			78.248		21.9		o k	
			78.203		16.4			
			78.170		12.1	3.2	o k	
			78.151		9.7	2.4	0 K	
			78.126		6.8	1.6	O K	
			78.111		5.3	1.2	ОК	
7200	min Su	mmer	78.102	0.102	4.4	1.0	O K	
8640	min Su	mmer	78.094	0.094	3.7	0.8	o k	
10080	min Su	mmer	78.089	0.089	3.3	0.7	O K	
			orm	Rai		-Peak		
		Ev	ent	(mm/ł	ır) (mi	ins)		
		15 mi	in Summer	r 161.9	61	19		
		30 mi	in Summer	r 95.6	510	31		
			in Summer			50		
			in Summer			84		
			in Summer			116		
			in Summer			148		
			in Summer			206		
			in Summer			260		
			in Summer			316		
			in Summer			374		
			in Summen in Summen			492 734		
			in Summer			1092		
			in Summer			1452		
			in Summer			2156		
			in Summer			2848		
	7	200 mi	n Summer	r 1.3	30	3560		
	8	640 mi	in Summer	r 1.1	.36	4272		
	10	080 mi	in Summer	r 0.9	94	5008		
	©.	1982-	2010 Mi	Loro Di	cainage	Ltd		
	0.000					1000-0000000		

EWE Associates Ltd						Pag	e 2	
Windy Ridge Barn		1						
Thealby Lane							79 mm l	
Winterton DN15 9TG						D v	I ARO	
	- 4	Deat					molecorr	
Date 28/09/2012 13:	and the second s	esigned By Lea				1200000		
File Area 2 - pipes.srcx Che			hecked By					
Micro Drainage	Sour	ce Cor	ntrol W	1.12.4	•			
Summary of Results for 100 year Return Period (+30%)								
	Storm		Max	Max	Max	Max	Status	
	Event				Control			
			(m)	(m)	(1/s)	(m³)		
15	min W	inter	78.922	Π.922	30.2	110.4	οĸ	
			78.971			117.5	OK	
			78.931			111.8	O K	
			78.813			93.2	O K	
			78.693		30.2		O K	
			78.566		30.2		O K	
				0.371	30.0		O K	
			78.295		26.6		O K	
			78.257	0.257	22.9		0 K 0 K	
			78.233		20.1 16.2			
				0.202				
			78.143		8.8		O K	
2880	min W:	inter	78.127	0.127	7.0	1.6	0 K	
			78.107		4.9	1.1	O K	
5760	min W:	inter	78.096	0.096	3.9	0.8	ОК	
			78.087		3.2		ОК	
			78.081		2.7		O K	
10080	min W:	Inter	78.077	0.077	2.4	0.5	O K	
		ste	orm	Rai	n Time	-Peak		
			ent	(mm/1		ins)		
		220.0	-3					
				r 161.		20		
				r 95.0 r 56.0		32 52		
				r 33.3		90		
				r 24.		126		
			n Winte			158		
				r 14.		206		
				r 11.)		258		
				r 9.		314		
				r 8.5		372		
				r 6.1		490		
			n Winte n Winte	r 5.1 r 3.1		734 1092		
				r 3.1 r 2.1		1092 1468		
				r 2.1		2184		
				r 1.)		2880		
	5	200 mi	n Winte	r 1.3	330	3672		
				r 1.		4280		
	10)080 mi	n Winte	r 0.9	994	4968		
					rainage			

		Dama d						
EWE Associates Ltd Windy Ridge Barn		Page 4						
windy Ridge Barn Thealby Lane								
Winterton DN15 9TG		1 Maro						
Date 28/09/2012 13:54	Designed By Lea	Drafaaaa						
File Area 2 - pipes.srcx	Checked By	<u>Dienece</u>						
Micro Drainage	Source Control W.12.4							
Micro Drainage	Micro Drainage Source control W.12.4							
Model Details								
Storage is Online Cover Level (m) 80.000								
	Pipe Structure							
Diameter (m) 1.000 Length (m) 176.000 Slope (1:X) 500.000 Invert Level (m) 78.000								
Hydro-Brake® Outflow Control								
	Design Head (m) 2.000 Hydro-Brake⊕ Type Md4 Invert Level (m) 78.000 Design Flow (l/s) 38.8 Diameter (mm) 187							
Depth (m) Flow (l/s) Depth	(m) Flow (l/s) Depth (m) Flow	7 (l/s) Depth (m) Flow (l/s)						
	200 29.9 3.000	47.2 7.000 72.1						
	400 32.2 3.500 500 34.5 4.000	51.0 7.500 74.6 54.5 8.000 77.1						
	600 34.5 4.000 800 36.6 4.500	57.8 8.500 79.4						
	000 38.5 5.000	60.9 9.000 81.8						
	200 40.4 5.500	63.9 9.500 84.0						
	400 42.2 6.000 600 43.9 6.500	66.7 69.5						
1.000 27.4 2.	43.9 0.000	09.3						
-	000 0010 W							
©_	1982-2010 Micro Drainage Lt	za						

Appendix I: - Severn Trent Water Information

Severn Trent Water

Severn Trent Water Ltd Regis Road Wolverhampton WV6 8RU

Tel: 01902 793871 Fax: 01902 793971

www.stwater.co.uk net.dev.west@severntrent.co.uk

Contact: Dave Hadley

Your ref: Our ref: WT31335

East Staffordshire Borough Council PO Box 8045 Burton Upon Trent Staffordshire DE14 9JG

Fao Ranbir Sahota

04 September 2012

Dear Sirs,

1

.

Proposed Development at Pennycroft Lane, Uttoxeter, Staffordshire ST14 7BW

I refer to your Development Enquiry Request in respect of the above site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes (SGN) referred to below.

Foul Water Drainage

The enclosed sewer record extract shows a 450mm diameter cast iron foul water sewer entering the site at manhole reference 1103. At manhole reference 1104, which is an overflow manhole, the sewers split into two 300mm diameter cast iron pipes. These continue across the site adjacent to the watercourse and leave the site at the eastern boundary as indicated diagrammatically on your sketch plan submitted.

For your information sewers of 300mm diameter up to 1000mm diameter have a 10.0 metres protected strip centred over them for which no building will be allowed to encroach. It is particularly important that the overflow manhole reference 1104 should be located in public land where it is easily accessible and not in the private garden of a property.

It is considered that the flow from 35 units will not have an adverse impact on the existing system. Any connections will be subject to formal S106 approval (see later). To note, there are no reported sewer flooding incidents in close proximity to the site.

Registered in England & Wales Registration No. 2366686 Registered Office: Severn Trent Centre, 2 St John's Street, Coventry CV1 2LZ www.stwater.co.uk

Severn Trent Water

Surface Water Drainage

The enclosed sewer record extract indicates a watercourse running through the middle of the site with 975mm and 375mm diameter surface water sewers connecting to this from the west. The above mentioned protected strips apply for these sewers. In the event that following comprehensive testing, it is demonstrated that soakaways would not be possible, evidence should be submitted. This would satisfy SGN1 (enclosed). As the site is effectively Greenfield a connection to the watercourse will then be necessary with flow rates in accordance with SGN3 at 5.0 l/s/ha or such other flow rate as directed by the Environment Agency or Local Authority Planning Department.

For any new connections (including the re-use of existing connections) to the public sewerage system, you will need to submit a Section 106 application form. Our New Connections department are responsible for handling all such enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 7076600 or download from www.stwater.co.uk.

Please quote WT31335 in any future correspondence (including emails) with STW Limited. Please note that 'Development Enquiry' responses are only valid for 6 months from the date of this letter.

Yours sincerely

, J. Madla 0

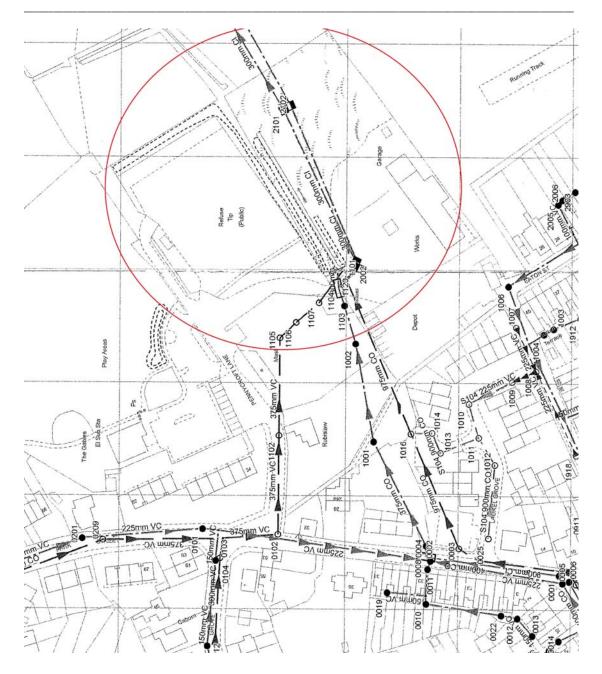
D J Hadley Waste Water Services - Asset Protection (West)

Registered in England & Wales Registration No. 2366686 Registered Office: Severn Trent Centre, 2 St John's Street, Coventry CV1 2LZ www.stwater.co.uk

SUPPLEMENTARY GUIDANCE NOTES

In 2006 the Government issued national advice in the form of "Planning Policy Statement 25: Development and Flood Risk" that seeks to reduce the impact of development on surface water runoff. This advice is generally followed by Local Authorities through both the Building Regulations (Approved Document H) and the imposition of appropriate planning conditions. Severn Trent welcomes this advice and supports such planning conditions that impose flow restrictions. It is considered that in accordance with current guidance disposal of storm runoff from the development should be dealt with as follows:

- By soakage into the site's subsoil, subject to suitable ground soakage capacity and any contamination present. If ground soakage proves inadequate, evidence should be submitted to Severn Trent Water. The evidence should be either percolation test results or a statement from the SI consultant (extract from report or a supplementary letter) stating that soakaways would be ineffective. A connection to public severage (existing or adoptable) would then be considered reasonable with flows as:
- Brown field development site: If storm runoff from the existing development is connected to the public sewerage system, then peak storm flows from the proposed development up to that generated from the previous connected impermeable area may be connected to the network subject to the details of the existing storm connection arrangements being submitted to Severn Trent Water.


For existing storm connections to the public foul sewerage system, any new storm connection to the public storm sewerage system (if available) should be limited to 5 litres/sec/ha (option A) OR a peak flow to be determined by the Company from its developer-funded hydraulic modelling of the public storm sewerage system (option B). The developer may choose either option. Existing flows should be assessed as the lower of Q=2.78x50xA_{imp} I/s (A_{imp} ha) and the unsurcharged capacity of the outfall pipe(s).

In addition to this restriction, for Brownfield developments, the Company would also suggest a reduction in surface water flow to the public sewerage systems of 20%. It should be noted that the Company would like to see any flow attenuation based on a 30 year critical duration storm design in accordance with 'Sewers for Adoption' current edition.

3. <u>Green field development site</u>: If the site is a green field development i.e. not involving any demolition of buildings or paved areas connected to the public sewerage system, then the storm runoff from the proposed development may be connected to the public sewerage system subject to peak storm flows (30 year design storm) being limited to a green field runoff of 5 litres/sec/ha (subject to a minimum of 5 litres/sec), applied to the gross area of the site, subject to sufficient capacity in the network.

17/07/2012 Version 1.5

East Staffordshire Borough Council Proposed Residential Development, Off Pennycroft Way, Uttoxeter – Flood Risk Assessment Draft Report Rev0 September 2012 Reference: 2012/1042

